Identification of a nucleoside/nucleobase transporter from Plasmodium falciparum, a novel target for anti-malarial chemotherapy.

نویسندگان

  • M D Parker
  • R J Hyde
  • S Y Yao
  • L McRobert
  • C E Cass
  • J D Young
  • G A McConkey
  • S A Baldwin
چکیده

Plasmodium, the aetiologic agent of malaria, cannot synthesize purines de novo, and hence depends upon salvage from the host. Here we describe the molecular cloning and functional expression in Xenopus oocytes of the first purine transporter to be identified in this parasite. This 422-residue protein, which we designate PfENT1, is predicted to contain 11 membrane-spanning segments and is a distantly related member of the widely distributed eukaryotic protein family the equilibrative nucleoside transporters (ENTs). However, it differs profoundly at the sequence and functional levels from its homologous counterparts in the human host. The parasite protein exhibits a broad substrate specificity for natural nucleosides, but transports the purine nucleoside adenosine with a considerably higher apparent affinity (K(m) 0.32+/-0.05 mM) than the pyrimidine nucleoside uridine (K(m) 3.5+/-1.1 mM). It also efficiently transports nucleobases such as adenine (K(m) 0.32+/-0.10 mM) and hypoxanthine (K(m) 0.41+/-0.1 mM), and anti-viral 3'-deoxynucleoside analogues. Moreover, it is not sensitive to classical inhibitors of mammalian ENTs, including NBMPR [6-[(4-nitrobenzyl)thio]-9-beta-D-ribofuranosylpurine, or nitrobenzylthioinosine] and the coronary vasoactive drugs, dipyridamole, dilazep and draflazine. These unique properties suggest that PfENT1 might be a viable target for the development of novel anti-malarial drugs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comprehensive model of purine uptake by the malaria parasite Plasmodium falciparum: identification of four purine transport activities in intraerythrocytic parasites.

Plasmodium falciparum is incapable of de novo purine biosynthesis, and is absolutely dependent on transporters to salvage purines from the environment. Only one low-affinity adenosine transporter has been characterized to date. In the present study we report a comprehensive study of purine nucleobase and nucleoside transport by intraerythrocytic P. falciparum parasites. Isolated trophozoites ex...

متن کامل

Identification of Selective Inhibitors of the Plasmodium falciparum Hexose Transporter PfHT by Screening Focused Libraries of Anti-Malarial Compounds

Development of resistance against current antimalarial drugs necessitates the search for novel drugs that interact with different targets and have distinct mechanisms of action. Malaria parasites depend upon high levels of glucose uptake followed by inefficient metabolic utilization via the glycolytic pathway, and the Plasmodium falciparum hexose transporter PfHT, which mediates uptake of gluco...

متن کامل

Validation of the hexose transporter of Plasmodium falciparum as a novel drug target.

Chemotherapy of malaria parasites is limited by established drug resistance and lack of novel targets. Intraerythrocytic stages of Plasmodium falciparum are wholly dependent on host glucose for energy. Glucose uptake is mediated by a parasite-encoded facilitative hexose transporter (PfHT). We report that O-3 hexose derivatives inhibit uptake of glucose and fructose by PfHT when expressed in Xen...

متن کامل

Comparative characterization of hexose transporters of Plasmodium knowlesi, Plasmodium yoelii and Toxoplasma gondii highlights functional differences within the apicomplexan family.

Chemotherapy of apicomplexan parasites is limited by emerging drug resistance or lack of novel targets. PfHT1, the Plasmodium falciparum hexose transporter 1, is a promising new drug target because asexual-stage malarial parasites depend wholly on glucose for energy. We have performed a comparative functional characterization of PfHT1 and hexose transporters of the simian malarial parasite P. k...

متن کامل

Malaria parasite type 4 equilibrative nucleoside transporters (ENT4) are purine transporters with distinct substrate specificity.

Malaria, caused by Plasmodia parasites, affects hundreds of millions of people. As purine auxotrophs, Plasmodia use transporters to import host purines for subsequent metabolism by the purine salvage pathway. Thus purine transporters are attractive drug targets. All sequenced Plasmodia genomes encode four ENTs (equilibrative nucleoside transporters). During the pathogenic intraerythrocytic stag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 349 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2000